Soil & Groundwater
Soil contamination or soil pollution as part of land degradation is caused by the presence of xenobiotics (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons (such as naphthalene and benzo(a)pyrene), solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting cleanups are time-consuming and expensive tasks, requiring extensive amounts of geology, hydrology, chemistry, computer modeling skills, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.
In North America and Western Europe the extent of contaminated land is best known, with many of countries in these areas having a legal framework to identify and deal with this environmental problem. Developing countries tend to be less tightly regulated despite some of them having undergone significant industrialization.
Groundwater pollution (also called groundwater contamination) occurs when pollutants are released to the ground and make their way down into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution.
The pollutant often creates a contaminant plume within an aquifer. Movement of water and dispersion within the aquifer spreads the pollutant over a wider area. Its advancing boundary, often called a plume edge, can intersect with groundwater wells or daylight into surface water such as seeps and springs, making the water supplies unsafe for humans and wildlife. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater pollution may focus on soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants.
Pollution can occur from on-site sanitation systems, landfills, effluent from wastewater treatment plants, leaking sewers, petrol filling stations or from over application of fertilizers in agriculture. Pollution (or contamination) can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.
Different mechanisms have influence on the transport of pollutants, e.g. diffusion, adsorption, precipitation, decay, in the groundwater. The interaction of groundwater contamination with surface waters is analyzed by use of hydrology transport models.
Hydrogeology (hydro- meaning water, and -geology meaning the study of the Earth) is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth’s crust (commonly in aquifers). The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.
Groundwater engineering, another name for hydrogeology, is a branch of engineering which is concerned with groundwater movement and design of wells, pumps, and drains. The main concerns in groundwater engineering include groundwater contamination, conservation of supplies, and water quality.
Wells are constructed for use in developing nations, as well as for use in developed nations in places which are not connected to a city water system. Wells must be designed and maintained to uphold the integrity of the aquifer, and to prevent contaminants from reaching the groundwater. Controversy arises in the use of groundwater when its usage impacts surface water systems, or when human activity threatens the integrity of the local aquifer system.
Hydrodynamic dispersion
Hydrodynamic dispersivity (αL, αT) is an empirical factor which quantifies how much contaminants stray away from the path of the groundwater which is carrying it. Some of the contaminants will be “behind” or “ahead” the mean groundwater, giving rise to a longitudinal dispersivity (αL), and some will be “to the sides of” the pure advective groundwater flow, leading to a transverse dispersivity (αT). Dispersion in groundwater arises because each water “particle”, passing beyond a soil particle, must choose where to go, whether left or right or up or down, so that the water “particles” (and their solute) are gradually spread in all directions around the mean path. This is the “microscopic” mechanism, on the scale of soil particles. More important, over long distances, can be the macroscopic inhomogeneities of the aquifer, which can have regions of larger or smaller permeability, so that some water can find a preferential path in one direction, some other in a different direction, so that the contaminant can be spread in a completely irregular way, like in a (three-dimensional) delta of a river.
Dispersivity is actually a factor which represents our lack of information about the system we are simulating. There are many small details about the aquifer which are effectively averaged when using a macroscopic approach (e.g., tiny beds of gravel and clay in sand aquifers); these manifest themselves as an apparent dispersivity. Because of this, α is often claimed to be dependent on the length scale of the problem — the dispersivity found for transport through 1 m3 of aquifer is different from that for transport through 1 cm3 of the same aquifer material.